Exercise 6

Use the modified decomposition method to solve the following Volterra integral equations:

$$
u(x)=e^{-x^{2}}-\frac{x}{2}\left(1-e^{-x^{2}}\right)-\int_{0}^{x} x t u(t) d t
$$

[TYPO: In order to get the answer at the back of the book, this minus sign must be a plus sign.]

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{aligned}
\sum_{n=0}^{\infty} u_{n}(x) & =e^{-x^{2}}+\frac{x}{2}\left(1-e^{-x^{2}}\right)-\int_{0}^{x} x t \sum_{n=0}^{\infty} u_{n}(t) d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =e^{-x^{2}}+\frac{x}{2}\left(1-e^{-x^{2}}\right)-\int_{0}^{x} x t\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =\underbrace{e^{-x^{2}}}_{u_{0}(x)}+\underbrace{\frac{x}{2}\left(1-e^{-x^{2}}\right)-\int_{0}^{x} x t u_{0}(t) d t}_{u_{1}(x)}+\underbrace{\int_{0}^{x} x t\left[-u_{1}(t)\right] d t}_{u_{2}(x)}+\cdots
\end{aligned}
$$

Grouping the terms as we have makes it so that the series terminates early.

$$
\begin{aligned}
& u_{0}(x)=e^{-x^{2}} \\
& u_{1}(x)=\frac{x}{2}\left(1-e^{-x^{2}}\right)-\int_{0}^{x} x t u_{0}(t) d t=\frac{x}{2}\left(1-e^{-x^{2}}\right)-\frac{x}{2}\left(1-e^{-x^{2}}\right)=0 \\
& u_{2}(x)=\int_{0}^{x} x t\left[-u_{1}(t)\right] d t=0 \\
& \vdots \\
& u_{n}(x)=\int_{0}^{x} x t\left[-u_{n-1}(t)\right] d t=0, \quad n>2
\end{aligned}
$$

Therefore,

$$
u(x)=e^{-x^{2}}
$$

